Publication

Original Papers

80. *Fujimoto H, Notsu E, Yamamoto R, Ono M, Hioki H, Takahashi M, *Ito T. (2021) Kv4.2-Positive Domains on Dendrites in the Mouse Medial Geniculate Body Receive Ascending Excitatory and Inhibitory Inputs Preferentially from the Inferior Colliculus. Front Neurosci. 15:740378
PMID:, doi:10.3389/fnins.2021.740378

79. Kitamura E, *Koike M, Hirayama T, Sunabori T, Kameda H, Hioki H, Takeda S, Itakura A. (2021) Susceptibility of subregions of prefrontal cortex and corpus callosum to damage by high-dose oxytocin-induced labor in male neonatal mice. PLOS ONE. 16(8):e0256693.
PMID:34437622, doi:10.1371/journal.pone.0256693

78. Takahashi H, Asahina R, Fujioka M, Matsui TK, Kato S, Mori E, Hioki H, Yamamoto T, Kobayashi K, *Tsuboi A. (2021) Ras-like Gem GTPase induced by Npas4 promotes activity-dependent neuronal tolerance for ischemic stroke. Proc Natl Acad Sci U S A. 118(32):e2018850118.
PMID:34349016, doi:10.1073/pnas.2018850118

77. Okamoto S, Yamauchi K, Sohn J, Takahashi M, Ishida Y, Furuta T, Koike M, Fujiyama F, *Hioki H. (2021) Exclusive labeling of direct and indirect pathway neurons in the mouse neostriatum by an adeno-associated virus vector with Cre/lox system. STAR Protoc. 2(1):100230.
PMID:33364620, doi:10.1016/j.xpro.2020.100230

76. Horie S, Kiyokage E, Hayashi S, Inoue K, Sohn J, Hioki H, Furuta T, *Toida K. (2021) Structural basis for noradrenergic regulation of neural circuits in the mouse olfactory bulb. J Comp Neurol. 529(9):2189-2208.
PMID:33616936, doi:10.1002/cne.25085

75. Okamoto K, Ebina T, Fujii N, Konishi K, Sato Y, Kashima T, Nakano R, Hioki H, Takeuchi H, Yumoto J, Matsuzaki M, *Ikegaya Y. (2021) Tb(3+)-doped fluorescent glass for biology. Sci Adv. 7(2):eabd2529.
PMID:33523970, doi:10.1126/sciadv.abd252

74. Elahi M, Motoi Y, Shimonaka S, Ishida Y, Hioki H, Takanashi M, Ishiguro K, *Imai Y, Hattori N. (2021) High-fat diet-induced activation of SGK1 promotes Alzheimer’s disease-associated tau pathology. Hum Mol Genet. 30(18):1693-1710.
PMID:33890983, doi:10.1093/hmg/ddab115

73. Ota K, Oisi Y, Suzuki T, Ikeda M, Ito Y, Ito T, Uwamori H, Kobayashi K, Kobayashi M, Odagawa M, Matsubara C, Kuroiwa Y, Horikoshi M, Matsushita J, Hioki H, Ohkura M, Nakai J, Oizumi M, Miyawaki A, Aonishi T, Ode T, *Murayama M. (2021) Fast, cell-resolution, contiguous-wide two-photon imaging to reveal functional network architectures across multi-modal cortical areas. Neuron. 109(11):1810-1824.
PMID:33878295, doi:10.1016/j.neuron.2021.03.032

72. Chen S, He L, Huang AJY, Boehringer R, Robert V, Wintzer ME, Polygalov D, Weitemier AZ, Tao Y, Gu M, Middleton SJ, Namiki K, Hama H, Therreau L, Chevaleyre V, Hioki H, Miyawaki A, Piskorowski RA, *McHugh TJ. (2020) A hypothalamic novelty signal modulates hippocampal memory. Nature. 586(7828):270-274.
PMID:32999460, doi:10.1038/s41586-020-2771-1

71. Katayama H, Hama H, Nagasawa K, Kurokawa H, Sugiyama M, Ando R, Funata M, Yoshida N, Homma M, Nishimura T, Takahashi M, Ishida Y, Hioki H, Tsujihata Y, *Miyawaki A. (2020) Visualizing and Modulating Mitophagy for Therapeutic Studies of Neurodegeneration. Cell. 181(5):1176-1187.
PMID:32437660, doi:10.1016/j.cell.2020.04.025

70. Okunomiya T, Hioki H, Nishimura C, Yawata S, Imayoshi I, Kageyama R, Takahashi R, *Watanabe D. (2020) Generation of a MOR-CreER knock-in mouse line to study cells and neural circuits involved in mu opioid receptor signaling. Genesis. 58(1):e23341.
PMID:31651080, doi:10.1002/dvg.23341

69. Okamoto S, Sohn J, Tanaka T, Takahashi M, Ishida Y, Yamauchi K, Koike M, Fujiyama F, *Hioki H. (2020) Overlapping Projections of Neighboring Direct and Indirect Pathway Neostriatal Neurons to Globus Pallidus External Segment. iScience. 23(9):101409.
PMID:32877648, doi:10.1016/j.isci.2020.101409

68. Hwang J, Koike M, *Hioki H. (2019) Reduction of Freezing Behavior by Acupuncture Stimulation at HT7 in Contextual Fear-Conditioned Mice. Juntendo Medical Journal. 65(6):554-560.
doi:10.14789/jmj.2019.65.JMJ19-OA17

67. Shibata KI, Tanaka T, Hioki H, *Furuta T. (2018) Projection Patterns of Corticofugal Neurons Associated with Vibrissa Movement. eNeuro. 5(5):ENEURO.0190-18.2018.
PMID:30406196, doi:10.1523/ENEURO.0190-18.2018

66. *Hioki H, Sohn J, Nakamura H, Okamoto S, Hwang J, Ishida Y, Takahashi M, Kameda H. (2018) Preferential inputs from cholecystokinin-positive neurons to the somatic compartment of parvalbumin-expressing neurons in the mouse primary somatosensory cortex. Brain Res. 1695:18-30.
PMID:29792869, doi:10.1016/j.brainres.2018.05.029

65. Norimoto H, Makino K, Gao M, Shikano Y, Okamoto K, Ishikawa T, Sasaki T, Hioki H, Fujisawa S, *Ikegaya Y. (2018) Hippocampal ripples down-regulate synapses. Science. 359(6383):1524-1527.
PMID:29439023, doi:10.1126/science.aao0702

64. Hirai D, Nakamura KC, Shibata KI, Tanaka T, Hioki H, Kaneko T, *Furuta T. (2018) Shaping somatosensory responses in awake rats: cortical modulation of thalamic neurons. Brain Struct Funct. 223(2):851-872.
PMID:28993883, doi:10.1007/s00429-017-1522-z

63. Ohara S, Onodera M, Simonsen OW, Yoshino R, Hioki H, Iijima T, Tsutsui KI, *Witter MP. (2018) Intrinsic Projections of Layer Vb Neurons to Layers Va, III, and II in the Lateral and Medial Entorhinal Cortex of the Rat. Cell Rep. 24(1):107-116.
PMID:29972772, doi:10.1016/j.celrep.2018.06.014

62. Nakano Y, Karube F, Hirai Y, Kobayashi K, Hioki H, Okamoto S, Kameda H, *Fujiyama F. (2018) Parvalbumin-producing striatal interneurons receive excitatory inputs onto proximal dendrites from the motor thalamus in male mice. J Neurosci Res. 96(7):1186-1207.
PMID:29314192, doi:10.1002/jnr.24214

61. Iwano S, Sugiyama M, Hama H, Watakabe A, Hasegawa N, Kuchimaru T, Tanaka KZ, Takahashi M, Ishida Y, Hata J, Shimozono S, Namiki K, Fukano T, Kiyama M, Okano H, Kizaka-Kondoh S, McHugh TJ, Yamamori T, Hioki H, Maki S, *Miyawaki A. (2018) Single-cell bioluminescence imaging of deep tissue in freely moving animals. Science.359(6378):935-939.
PMID:29472486, doi:10.1126/science.aaq1067

60. Okamoto K, Hitora-Imamura N, Hioki H, *Ikegaya Y. (2018) GABAergic malfunction in the anterior cingulate cortex underlying maternal immune activation-induced social deficits. J Neuroimmunol. 321:92-96.
PMID:29957393, doi:10.1016/j.jneuroim.2018.06.006

59. Safari MS, Mirnajafi-Zadeh J, Hioki H, *Tsumoto T. (2017) Parvalbumin-expressing interneurons can act solo while somatostatin-expressing interneurons act in chorus in most cases on cortical pyramidal cells. Sci Rep. 7(1):12764.
PMID:28986578, doi:10.1038/s41598-017-12958-4

58. *Kuramoto E, Pan S, Furuta T, Tanaka YR, Iwai H, Yamanaka A, Ohno S, Kaneko T, Goto T, *Hioki H. (2017) Individual mediodorsal thalamic neurons project to multiple areas of the rat prefrontal cortex: A single neuron-tracing study using virus vectors. J Comp Neurol. 525(1):166-185.
PMID:27275581, doi:10.1002/cne.24054

57. Hamamoto M, Kiyokage E, Sohn J, Hioki H, Harada T, Toida K. (2017) Structural basis for cholinergic regulation of neural circuits in the mouse olfactory bulb. J Comp Neurol. 525(3):574-591.
PMID:27491021, doi:10.1002/cne.24088

56. *Kuramoto E, Iwai H, Yamanaka A, Ohno S, Seki H, Tanaka YR, Furuta T, Hioki H, *Goto T. (2017) Dorsal and ventral parts of thalamic nucleus submedius project to different areas of rat orbitofrontal cortex: A single neuron-tracing study using virus vectors. J Comp Neurol. 525(18):3821-3839.
PMID:28863230, doi:10.1002/cne.24306

55. Sohn J, Takahashi M, Okamoto S, Ishida Y, Furuta T, *Hioki H. (2017) A Single Vector Platform for High-Level Gene Transduction of Central Neurons: Adeno-Associated Virus Vector Equipped with the Tet-Off System. PLoS One.12(1):e0169611.
PMID:28060929, doi:10.1371/journal.pone.0169611

54. Takahashi A, Islam MS, Abe H, Okubo K, Akazome Y, Kaneko T, Hioki H, *Oka Y. (2016) Morphological analysis of the early development of telencephalic and diencephalic gonadotropin-releasing hormone neuronal systems in enhanced green fluorescent protein-expressing transgenic medaka lines. J Comp Neurol. 524(4):896-913.
PMID:26287569, doi:10.1002/cne.23883

53. Sohn J, Okamoto S, Kataoka N, Kaneko T, Nakamura K, *Hioki H. (2016) Differential Inputs to the Perisomatic and Distal-Dendritic Compartments of VIP-Positive Neurons in Layer 2/3 of the Mouse Barrel Cortex. Front Neuroanat. 10:124.
PMID:28066195, doi:10.3389/fnana.2016.00124

52. *Ito T, Hioki H, Sohn J, Okamoto S, Kaneko T, Iino S, Oliver DL. (2015) Convergence of Lemniscal and Local Excitatory Inputs on Large GABAergic Tectothalamic Neurons. J Comp Neurol. 523(15):2277-2296.
PMID:25879870, doi:10.1002/cne.23789

51. Hama H, Hioki H, Namiki K, Hoshida T, Kurokawa H, Ishidate F, Kaneko T, Akagi T, Saito T, Saido T, *Miyawaki A. (2015) ScaleS: an optical clearing palette for biological imaging. Nat Neurosci. 18(10):1518-1529.
PMID:26368944, doi:10.1038/nn.4107

50. Nakamura H, *Hioki H, Furuta T, Kaneko T. (2015) Different cortical projections from three subdivisions of the rat lateral posterior thalamic nucleus: a single-neuron tracing study with viral vectors. Eur J Neurosci. 41(10):1294-1310.
PMID:25832313, doi:10.1111/ejn.12882

49. Ueda S, Niwa M, Hioki H, Sohn J, Kaneko T, Sawa A, *Sakurai T. (2015) Sequence of Molecular Events during the Maturation of the Developing Mouse Prefrontal Cortex. Mol Neuropsychiatry. 1(2):94-104.
PMID:26457295, doi:10.1159/000430095

48. Kuramoto E, Ohno S, Furuta T, Unzai T, Tanaka YR, Hioki H, *Kaneko T. (2015) Ventral medial nucleus neurons send thalamocortical afferents more widely and more preferentially to layer 1 than neurons of the ventral anterior-ventral lateral nuclear complex in the rat. Cereb Cortex. 25(1):221-235.
PMID:23968832, doi:10.1093/cercor/bht216

47. Kumar S, Zimmermann K, Hioki H, Pfeifer A, *Baader SL. (2015) Efficient and graded gene expression in glia and neurons of primary cerebellar cultures transduced by lentiviral vectors. Histochem Cell Biol. 143(1):109-121.
PMID:25156294, doi:10.1007/s00418-014-1260-8

46. Suzuki Y, Kiyokage E, Sohn J, Hioki H, *Toida K. (2015) Structural basis for serotonergic regulation of neural circuits in the mouse olfactory bulb. J Comp Neurol. 523(2):262-280.
PMID:25234191, doi:10.1002/cne.23680

45. Peirs C, Williams SP, Zhao X, Walsh CE, Gedeon JY, Cagle NE, Goldring AC, Hioki H, Liu Z, Marell PS, *Seal RP. (2015 )Dorsal Horn Circuits for Persistent Mechanical Pain. Neuron. 87(4):797-812.
PMID:26291162, doi:10.1016/j.neuron.2015.07.029

44. Sohn J, Hioki H, Okamoto S, *Kaneko T. (2014) Preprodynorphin-expressing neurons constitute a large subgroup of somatostatin-expressing GABAergic interneurons in the mouse neocortex. J Comp Neurol. 522(7):1506-1526.
PMID:24122731, doi:10.1002/cne.23477

43. Ge SN, Li ZH, Tang J, Ma Y, Hioki H, Zhang T, Lu YC, Zhang FX, Mizuno N, Kaneko T, Liu YY, Lung MS, *Gao GD, *Li JL.(2014) Differential expression of VGLUT1 or VGLUT2 in the trigeminothalamic or trigeminocerebellar projection neurons in the rat. Brain Struct Funct. 219(1):211-229.
PMID:23380804, doi:10.1007/s00429-012-0495-1

42. Ebina T, Sohya K, Imayoshi I, Yin ST, Kimura R, Yanagawa Y, Kameda H, Hioki H, Kaneko T, *Tsumoto T. (2014) 3D clustering of GABAergic neurons enhances inhibitory actions on excitatory neurons in the mouse visual cortex. Cell Rep.9(5):1896-907.
PMID:25464846, doi:10.1016/j.celrep.2014.10.057

41. Kataoka N, Hioki H, Kaneko T, *Nakamura K. (2014) Psychological stress activates a dorsomedial hypothalamus-medullary raphe circuit driving brown adipose tissue thermogenesis and hyperthermia. Cell Metab. 20(2):346-358.
PMID:24981837, doi:10.1016/j.cmet.2014.05.018

40. Mizunuma M, Norimoto H, Tao K, Egawa T, Hanaoka K, Sakaguchi T, Hioki H, Kaneko T, Yamaguchi S, Nagano T, Matsuki N, *Ikegaya Y. (2014) Unbalanced excitability underlies offline reactivation of behaviorally activated neurons. Nat Neurosci. 17(4):503-505.
PMID:24633127, doi:10.1038/nn.3674

39. Toyoda Y, Shinohara R, Thumkeo D, Kamijo H, Nishimaru H, Hioki H, Kaneko T, Ishizaki T, Furuyashiki T, *Narumiya S. (2013) EphA4-dependent axon retraction and midline localization of Ephrin-B3 are disrupted in the spinal cord of mice lacking mDia1 and mDia3 in combination. Genes Cells. 18(10):873-85.
PMID:23890216, doi:10.1111/gtc.12081

38. Hioki H, Okamoto S, Konno M, Kameda H, Sohn J, Kuramoto E, Fujiyama F, *Kaneko T. (2013) Cell type-specific inhibitory inputs to dendritic and somatic compartments of parvalbumin-expressing neocortical interneuron. J Neurosci.33(2):544-555.
PMID:23303934, doi:10.1523/JNEUROSCI.2255-12.2013

37. Kondo T, Asai M, Tsukita K, Kutoku Y, Ohsawa Y, Sunada Y, Imamura K, Egawa N, Yahata N, Okita K, Takahashi K, Asaka I, Aoi T, Watanabe A, Watanabe K, Kadoya C, Nakano R, Watanabe D, Maruyama K, Hori O, Hibino S, Choshi T, Nakahata T, Hioki H, Kaneko T, Naitoh M, Yoshikawa K, Yamawaki S, Suzuki S, Hata R, Ueno S, Seki T, Kobayashi K, Toda T, Murakami K, Irie K, Klein WL, Mori H, Asada T, Takahashi R, Iwata N, Yamanaka S, *Inoue H. (2013) Modeling Alzheimer’s disease with iPSCs reveals stress phenotypes associated with intracellular Abeta and differential drug responsiveness.Cell Stem Cell. 12(4):487-496.
PMID:23434393, doi:10.1016/j.stem.2013.01.009

36. Kameda H, Hioki H, Tanaka YH, Tanaka T, Sohn J, Sonomura T, Furuta T, Fujiyama F, *Kaneko T. (2012) Parvalbumin-producing cortical interneurons receive inhibitory inputs on proximal portions and cortical excitatory inputs on distal dendrites. Eur J Neurosci. 35(6):838-854.
PMID:22429243, doi:10.1111/j.1460-9568.2012.08027.x

35. Ohno S, Kuramoto E, Furuta T, Hioki H, Tanaka YR, Fujiyama F, Sonomura T, Uemura M, Sugiyama K, *Kaneko T.(2012) A morphological analysis of thalamocortical axon fibers of rat posterior thalamic nuclei: a single neuron tracing study with viral vectors. Cereb Cortex. 22(12):2840-2857.
PMID:22190433, doi:10.1093/cercor/bhr356

34. Egawa N, Kitaoka S, Tsukita K, Naitoh M, Takahashi K, Yamamoto T, Adachi F, Kondo T, Okita K, Asaka I, Aoi T, Watanabe A, Yamada Y, Morizane A, Takahashi J, Ayaki T, Ito H, Yoshikawa K, Yamawaki S, Suzuki S, Watanabe D, Hioki H, Kaneko T, Makioka K, Okamoto K, Takuma H, Tamaoka A, Hasegawa K, Nonaka T, Hasegawa M, Kawata A, Yoshida M, Nakahata T, Takahashi R, Marchetto MC, Gage FH, Yamanaka S, *Inoue H. (2012) Drug screening for ALS using patient-specific induced pluripotent stem cells. Sci Transl Med. 4(145):145ra04.
PMID:22855461, doi:10.1126/scitranslmed.3004052

33. Li Z, Ge S, Zhang F, Zhang T, Mizuno N, Hioki H, Kaneko T, *Gao G, *Li J. (2012) Distribution of gephyrin-immunoreactivity in the trigeminal motor nucleus: an immunohistochemical study in rats. Anat Rec (Hoboken).295(4):641-651.
PMID:22290869, doi:10.1002/ar.22426

32. *Watakabe A, Kato S, Kobayashi K, Takaji M, Nakagami Y, Sadakane O, Ohtsuka M, Hioki H, Kaneko T, Okuno H, Kawashima T, Bito H, Kitamura Y, Yamamori T. (2012) Visualization of cortical projection neurons with retrograde TET-off lentiviral vector. PLoS One. 7(10):e46157.
PMID:23071541, doi:10.1371/journal.pone.0046157

31. Ma Y, *Hioki H, Konno M, Pan S, Nakamura H, Nakamura KC, Furuta T, Li JL, Kaneko T. (2011) Expression of gap junction protein connexin36 in multiple subtypes of GABAergic neurons in adult rat somatosensory cortex. Cereb Cortex. 21(11):2639-2649.
PMID:21467210, doi:10.1093/cercor/bhr051

30. Kuramoto E, Fujiyama F, Nakamura KC, Tanaka Y, Hioki H, *Kaneko T. (2011) Complementary distribution of glutamatergic cerebellar and GABAergic basal ganglia afferents to the rat motor thalamic nuclei. Eur J Neurosci.33(1):95-109.
PMID:21073550, doi:10.1111/j.1460-9568.2010.07481.x

29. Tanaka YR, Tanaka YH, Konno M, Fujiyama F, Sonomura T, Okamoto-Furuta K, Kameda H, Hioki H, Furuta T, Nakamura KC, *Kaneko T. (2011) Local connections of excitatory neurons to corticothalamic neurons in the rat barrel cortex. J Neurosci. 31(50):18223-18236.
PMID:22171028, doi:10.1523/JNEUROSCI.3139-11.2011

28. Yahata N, Asai M, Kitaoka S, Takahashi K, Asaka I, Hioki H, Kaneko T, Maruyama K, Saido TC, Nakahata T, Asada T, Yamanaka S, Iwata N, *Inoue H. (2011) Anti-Abeta drug screening platform using human iPS cell-derived neurons for the treatment of Alzheimer’s disease. PLoS One. 6(9):e25788.
PMID:21984949, doi:10.1371/journal.pone.0025788

27. Hioki H, Nakamura H, Ma YF, Konno M, Hayakawa T, Nakamura KC, Fujiyama F, *Kaneko T. (2010) Vesicular glutamate transporter 3-expressing nonserotonergic projection neurons constitute a subregion in the rat midbrain raphe nuclei. J Comp Neurol. 518(5):668-86.
PMID:20034056, doi:10.1002/cne.22237

26. *Ohira K, Furuta T, Hioki H, Nakamura KC, Kuramoto E, Tanaka Y, Funatsu N, Shimizu K, Oishi T, Hayashi M, Miyakawa T, *Kaneko T, Nakamura S. (2010) Ischemia-induced neurogenesis of neocortical layer 1 progenitor cells. Nat Neurosci.13(2):173-179.
PMID:20037576, doi:10.1038/nn.2473

25. Ge SN, Ma YF, Hioki H, Wei YY, Kaneko T, Mizuno N, *Gao GD, *Li JL. (2010) Coexpression of VGLUT1 and VGLUT2 in trigeminothalamic projection neurons in the principal sensory trigeminal nucleus of the rat. J Comp Neurol. 518(15):3149-3168.
PMID:20533365, doi:10.1002/cne.22389

24. Kuramoto E, Furuta T, Nakamura KC, Unzai T, Hioki H, *Kaneko T. (2009) Two types of thalamocortical projections from the motor thalamic nuclei of the rat: a single neuron-tracing study using viral vectors. Cereb Cortex. 19(9):2065-2077.
PMID:19174446, doi:10.1093/cercor/bhn231

23. Fujiyama T, Yamada M, Terao M, Terashima T, Hioki H, Inoue YU, Inoue T, Masuyama N, Obata K, Yanagawa Y, Kawaguchi Y, Nabeshima Y, *Hoshino M. (2009) Inhibitory and excitatory subtypes of cochlear nucleus neurons are defined by distinct bHLH transcription factors, Ptf1a and Atoh1. Development. 136(12):2049-58.
PMID:19439493, doi:10.1242/dev.033480

22. Matsuda W, Furuta T, Nakamura KC, Hioki H, Fujiyama F, Arai R, *Kaneko T. (2009) Single nigrostriatal dopaminergic neurons form widely spread and highly dense axonal arborizations in the neostriatum. J Neurosci. 29(2):444-453.
PMID:19144844, doi:10.1523/JNEUROSCI.4029-08.2009

21. Hioki H, Kuramoto E, Konno M, Kameda H, Takahashi Y, Nakano T, Nakamura KC, *Kaneko T. (2009) High-level transgene expression in neurons by lentivirus with Tet-Off system. Neurosci Res. 63(2):149-154.
PMID:19028532, doi:10.1016/j.neures.2008.10.010

20. Nakamura KC, Fujiyama F, Furuta T, Hioki H, *Kaneko T. (2009) Afferent islands are larger than mu-opioid receptor patch in striatum of rat pups. Neuroreport. 20(6):584-588.
PMID:19287319, doi:10.1097/WNR.0b013e328329cbf9

19. Koshimizu Y, Wu SX, Unzai T, Hioki H, Sonomura T, Nakamura KC, Fujiyama F, *Kaneko T. (2008) Paucity of enkephalin production in neostriatal striosomal neurons: analysis with preproenkephalin-green fluorescent protein transgenic mice.Eur J Neurosci. 28(10):2053-2064.
PMID:19046386, doi:10.1111/j.1460-9568.2008.06502.x

18. Kameda H, Furuta T, Matsuda W, Ohira K, Nakamura K, Hioki H, *Kaneko T. (2008) Targeting green fluorescent protein to dendritic membrane in central neurons. Neurosci Res. 61(1):79-91.
PMID:18342383, doi:10.1016/j.neures.2008.01.014

17. *Ito T, Hioki H, Nakamura K, Kaneko T, Iino S, Nojyo Y. (2008) Some gamma-motoneurons contain gamma-aminobutyric acid in the rat cervical spinal cord. Brain Res. 1201:78-87.
PMID:18294622, doi:10.1016/j.brainres.2008.01.056

16. Nishino E, Yamada R, Kuba H, Hioki H, Furuta T, Kaneko T, *Ohmori H. (2008) Sound-intensity-dependent compensation for the small interaural time difference cue for sound source localization. J Neurosci. 28(28):7153-7164.
PMID:18614685, doi:10.1523/JNEUROSCI.4398-07.2008

15. *Ito T, Hioki H, Nakamura K, Tanaka Y, Nakade H, Kaneko T, Iino S, Nojyo Y. (2007) Gamma-aminobutyric acid-containing sympathetic preganglionic neurons in rat thoracic spinal cord send their axons to the superior cervical ganglion. J Comp Neurol. 502(1):113-125.
PMID:17335042, doi:10.1002/cne.21309

14. Hioki H, Kameda H, Nakamura H, Okunomiya T, Ohira K, Nakamura K, Kuroda M, Furuta T, *Kaneko T. (2007) Efficient gene transduction of neurons by lentivirus with enhanced neuron-specific promoters. Gene Ther. 14(11):872-882.
PMID:17361216, doi:10.1038/sj.gt.3302924

13. Kuramoto E, Fujiyama F, Unzai T, Nakamura K, Hioki H, Furuta T, Shigemoto R, Ferraguti F, *Kaneko T. (2007) Metabotropic glutamate receptor 4-immunopositive terminals of medium-sized spiny neurons selectively form synapses with cholinergic interneurons in the rat neostriatum. J Comp Neurol. 500(5):908-922.
PMID:17177262, doi:10.1002/cne.21216

12. Nakamura K, Watakabe A, Hioki H, Fujiyama F, Tanaka Y, Yamamori T, *Kaneko T. (2007) Transiently increased colocalization of vesicular glutamate transporters 1 and 2 at single axon terminals during postnatal development of mouse neocortex: a quantitative analysis with correlation coefficient. Eur J Neurosci. 26(11):3054-3067.
PMID:18028110, doi:10.1111/j.1460-9568.2007.05868.x

11. Sonomura T, Nakamura K, Furuta T, Hioki H, Nishi A, Yamanaka A, Uemura M, *Kaneko T. (2007) Expression of D1 but not D2 dopamine receptors in striatal neurons producing neurokinin B in rats. Eur J Neurosci. 26(11):3093-3103.
PMID:18028111, doi:10.1111/j.1460-9568.2007.05923.x

10. Martin-Ibanez R, Jenstad M, Berghuis P, Edwards RH, Hioki H, Kaneko T, Mulder J, Canals JM, Ernfors P, Chaudhry FA, *Harkany T. (2006) Vesicular glutamate transporter 3 (VGLUT3) identifies spatially segregated excitatory terminals in the rat substantia nigra. Eur J Neurosci. 23(4):1063-1070.
PMID:16519671, doi:10.1111/j.1460-9568.2006.04601.x

9. Nakamura K, Hioki H, Fujiyama F, *Kaneko T. (2005)  Postnatal changes of vesicular glutamate transporter (VGluT)1 and VGluT2 immunoreactivities and their colocalization in the mouse forebrain. J Comp Neurol. 492(3):263-288.
PMID:16217795, doi:10.1002/cne.20705

8. Hioki H, Fujiyama F, Nakamura K, Wu SX, Matsuda W, *Kaneko T. (2004) Chemically specific circuit composed of vesicular glutamate transporter 3- and preprotachykinin B-producing interneurons in the rat neocortex. Cereb Cortex.14(11):1266-1275.
PMID:15142960, doi:10.1093/cercor/bhh088

7. Nakamura K, Wu SX, Fujiyama F, Okamoto K, Hioki H, *Kaneko T. (2004) Independent inputs by VGLUT2- and VGLUT3-positive glutamatergic terminals onto rat sympathetic preganglionic neurons. Neuroreport. 15(3):431-436.
PMID:15094498, doi:10.1097/00001756-200403010-00010

6. Wu SX, Koshimizu Y, Feng YP, Okamoto K, Fujiyama F, Hioki H, Li YQ, Kaneko T, *Mizuno N. (2004) Vesicular glutamate transporter immunoreactivity in the central and peripheral endings of muscle-spindle afferents. Brain Res. 1011(2):247-251.
PMID:15157812, doi:10.1016/j.brainres.2004.03.047

5. *Nakamura K, Matsumura K, Hubschle T, Nakamura Y, Hioki H, Fujiyama F, Boldogkoi Z, Konig M, Thiel HJ, Gerstberger R, Kobayashi S, Kaneko T. (2004) Identification of sympathetic premotor neurons in medullary raphe regions mediating fever and other thermoregulatory functions. J Neurosci. 24(23):5370-5380.
PMID:15190110, doi:10.1523/JNEUROSCI.1219-04.2004

4. Fujiyama F, Kuramoto E, Okamoto K, Hioki H, Furuta T, Zhou L, Nomura S, *Kaneko T. (2004) Presynaptic localization of an AMPA-type glutamate receptor in corticostriatal and thalamostriatal axon terminals. Eur J Neurosci. 20(12):3322-3330.
PMID:15610164, doi:10.1111/j.1460-9568.2004.03807.x

3. Fujiyama F, Hioki H, Tomioka R, Taki K, Tamamaki N, Nomura S, Okamoto K, *Kaneko T. (2003) Changes of immunocytochemical localization of vesicular glutamate transporters in the rat visual system after the retinofugal denervation. J Comp Neurol. 465(2):234-249.
PMID:12949784, doi:10.1002/cne.10848

2. Hioki H, Fujiyama F, Taki K, Tomioka R, Furuta T, Tamamaki N, *Kaneko T. (2003) Differential distribution of vesicular glutamate transporters in the rat cerebellar cortex. Neuroscience. 117(1):1-6.
PMID:12605886, doi:10.1016/s0306-4522(02)00943-0

1. *Kaneko T, Fujiyama F, Hioki H. (2002) Immunohistochemical localization of candidates for vesicular glutamate transporters in the rat brain. J Comp Neurol. 444(1):39-62.
PMID:11835181, doi:10.1002/cne.10129

Others

9. Yamauchi K, Takahashi M, *Hioki H. (2021) Application of a tissue clearing method for the analysis of dopaminergic axonal projections. In: Experimental Models of Parkinson’s Disease: Methods in Molecular Biology (Ed: Y. Imai), Springer, 2322:141-150.
PMID:34043200, doi:10.1007/978-1-0716-1495-2_14

8. Takahashi M, Ishida Y, Kataoka N, Nakamura K, *Hioki H. (2021) Efficient Labeling of Neurons and Identification of Postsynaptic Sites Using Adeno-Associated Virus Vector. Chapter 22 In: Lujan R., Ciruela F. (eds) Receptor and Ion Channel Detection in the Brain (2nd Ed). Neuromethods, vol 169. pp 323-341, Humana, New York, NY.
doi:10.1007/978-1-0716-1522-5_22

7. *Furuta T, Okamoto-Furuta K, Hioki H. (2021) Analysis of synaptic connections at the electron microscopic level using viral vectors. Chapter 23 In: Lujan R., Ciruela F. (eds) Receptor and Ion Channel Detection in the Brain (2nd Ed). Neuromethods, vol 169. pp 343-352, Humana, New York, NY.
doi:10.1007/978-1-0716-1522-5_23

6. *Hioki H, Nakamura H, Furuta T. (2021) Application of virus vectors for anterograde tract-tracing and single-neuron labeling studies. Chapter 21 In: Lujan R., Ciruela F. (eds) Receptor and Ion Channel Detection in the Brain (2nd Ed). Neuromethods, vol 169. pp 303-322, Humana, New York, NY.
doi:10.1007/978-1-0716-1522-5_21

5. Furuta T#, Yamauchi K#, Okamoto S, Takahashi M, Kakuta S, Ishida Y, Takenaka A, Yoshida A, Uchiyama Y, Koike M, Isa K, Isa T, *Hioki H. (2021) Multi-Scale LM/EM Neuronal Imaging from Brain to Synapse with a Tissue Clearing Method, ScaleSF. bioRxiv
doi:10.1101/2021.04.02.438164

4. *Furuta T, Okamoto-Furuta K, Hioki H. (2016) Analysis of synaptic connections using viral vectors at the electron microscopic level. Chapter 19 in Receptors and Ion Channel Detection in the Brain – Methods and Protocols (Neuromethods) edited by Rafael Luján and Francisco Ciruela, Springer, New York, pp.267-275.
doi:10.1007/978-1-4939-3064-7_19

3. *Hioki H, Nakamura H, Furuta T. (2016) Application of virus vectors for anterograde tract-tracing and single-neuron labeling studies. Chapter 18 in Receptors and Ion Channel Detection in the Brain – Methods and Protocols (Neuromethods) edited by Rafael Luján and Francisco Ciruela, Springer, New York, pp.247-266.
doi:10.1007/978-1-4939-3064-7_18

2. Hama H, Hioki H, Namiki K, Hoshida T, Kurokawa H, *Miyawaki A. (2016) Deep imaging of cleared brain by confocal laser-scanning microscopy. Protocol Exchange
doi:10.1038/protex.2016.019

1. [Review Article] *Hioki H. (2015) Compartmental organization of synaptic inputs to parvalbumin-expressing GABAergic neurons in mouse primary somatosensory cortex. Anat Sci Int90:7-21, 2015.
PMID:25467527, doi:10.1007/s12565-014-0264-8

和文総説・著書

15. *日置寛之髙橋慧山内健太:組織透明化技術の基礎と実践. 組織細胞化学. 2021:185-197, 2021.
組織細胞化学2021

14. *日置寛之、古田貴寛:シンドビスウイルスベクター. In: 実験医学別冊『決定版 ウイルスベクターによる遺伝子導入実験ガイド』 (平井宏和、日置寛之、小林和人/編), 73-80, 2020.
実験医学別冊

13. *古田貴寛、日置寛之:シンドビスウイルスによる蛍光タンパク質導入神経線維トレーシング. In: 実験医学別冊『決定版 ウイルスベクターによる遺伝子導入実験ガイド』 (平井宏和、日置寛之、小林和人/編), 219-228, 2020.
実験医学別冊

12. *日置寛之髙橋慧山内健太:組織透明化技術の基本から応用まで. 組織細胞化学. 2020:183-194, 2020.
組織細胞化学2020

11. *日置寛之、濱裕、宮脇敦史:組織透明化技術. 実験医学36(20):3564-3566, 2018.
実験医学増刊 Vol.36 No.20

10. *日置寛之:透明化技術が切り拓くバイオイメージングの新たな展開. 組織細胞化学. 2018:195-206, 2018.
J-GLOBAL ID:201902258815989773, 組織細胞化学2018

9. *日置寛之、濱裕、孫在隣、黄晶媛、並木香奈、星田哲志、黒川裕、宮脇敦史:マクロレベルからナノレベルまでの連続イメージング. 生体の科学68:416-417, 2017.
doi:10.11477/mf.2425200672

8. *日置寛之、濱裕、孫在隣、黄晶媛、並木香奈、星田哲志、黒川裕、宮脇敦史:脳透明化技術の現状と今後の発展 —ScaleS法に焦点を当てて—. 日本薬理学雑誌149:173-179, 2017.
doi:10.1254/fpj.149.173

7. 濱裕、日置寛之、並木香奈、星田哲志、黒川裕、宮脇敦史:組織の透明化技術. 生体の科学68:85-93, 2017.
doi:10.11477/mf.2425200582

6. *日置寛之:介在ニューロン. 脳科学辞典. 2016.
doi:10.14931/bsd.7006

5. *日置寛之:抑制性インターニューロンとオシレーション. 臨床神経科学 (Clinical Neuroscience)32:743-746, 2014.
J-GLOBAL ID:201402262934100901

4. 中村悠、*日置寛之:ウイルスベクターを用いた遺伝子導入による単一ニューロン標識 A single neuron-labeling technique with viral vectors. 細胞47:46-49, 2015.
J-GLOBAL ID:201502293964067100

3. 松田和郎、古田貴寛、薗村貴弘、大原信司、布施郁子、武内重二、山上達人、安田宗義、本間智、中村公一、日置寛之、藤山文乃、金子武嗣、宇田川潤:中脳ドパミン系の投射様式:パーキンソン病の発症に関与する神経基盤についての考察 Axonal arborization of dopaminergic neurons of the rat midbrain: mechanism of parkinson’s disease. 機能的脳神経外科51:60-66, 2012.
J-GLOBAL ID:201302243217626581

2. 倉本恵梨子、古田貴寛、日置寛之、藤山文乃、*金子武嗣:シンドビスウイルスベクターを用いた新しい単一神経細胞標識法 ―運動性視床核ニューロンの完全再構築を例として Novel single-neuron-tracing method using sindbis viral vectors. 顕微鏡46:125-131, 2011.
doi:10.11410/kenbikyo.46.2_125

1. 藤山文乃、日置寛之、*金子武嗣:中枢神経ネットワークにおけるシナプス小胞性グルタミン酸トランスポーター. 脳218(4):405-410, 2005.
脳21 8巻4号

和文報告・その他

5. 特願2019-205623、出願日:2019年11月13日、発明者:日置寛之山内健太石田葉子、発明の名称:標的タンパク質のイメージング方法.

4. 特願2019-109509、出願日:2019年6月12日、発明者:日置寛之、発明の名称:顕微鏡への観察標本セット用具及び方法.

3. 濱裕、日置寛之、並木香奈、星田哲志、黒川裕、斎藤貴志、西道隆臣、宮脇敦史:神経病理と新技術 組織透明化技術ScaleS法による脳組織の探索. Dementia Japan, 32:24-35, 2018.
J-GLOBAL ID:201802284360371201

2. 濱裕、日置寛之、並木香奈、星田哲志、黒川裕、斉藤貴志、西道隆臣、宮脇敦史:透明化技術Scaleによる神経組織の探索. Dementia Japan 30:490, 2016.
J-GLOBAL ID:20180228436037120

1. *日置寛之:パルブアルブミン発現皮質抑制性神経細胞に対する、細胞種特異的シナプス入力様式の解明 Cell type-specific inputs to dendritic and somatic compartments of parvalbumin-expressing interneuron in mouse neocortex. 解剖学雑誌 89(4):41-42, 2014.
解剖学雑誌 89巻4号